Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Lung adenocarcinoma (LUAD) is one of the most prevalent and leading causes of cancer deaths globally, with limited diagnostic and clinically significant therapeutic targets. Identifying the genes and processes involved in developing and progressing LUAD is crucial for developing effective targeted therapeutics and improving patient outcomes. Therefore, the study aimed to explore the RNA sequencing data of LUAD from The Cancer Genome Atlas (TCGA) and gene expression profile datasets involving GSE10072, GSE31210, and GSE32863 from the Gene Expression Omnibus (GEO) databases. The differential gene expression and the downstream analysis determined clinically significant biomarkers using a network-based approach. These therapeutic targets predominantly enriched the dysregulation of mitotic cell cycle regulation and revealed the co-overexpression of Aurora-A Kinase (AURKA) and Targeting Protein for Xklp2 (TPX2) with high survival risk in LUAD patients. The hydrophobic residues of the AURKA–TPX2 interaction were considered as the target site to block the autophosphorylation of AURKA during the mitotic cell cycle. The tyrosine kinase inhibitor (TKI) dacomitinib demonstrated the strong binding potential to hinder TPX2, shielding the AURKA destabilization. This in silico study lays the foundation for repurposing targeted therapeutic options to impede the Protein–Protein Interactions (PPIs) in LUAD progression and aid in future translational investigations.more » « less
-
Quantum key distribution, which allows two distant parties to share an unconditionally secure cryptographic key, promises to play an important role in the future of communication. For this reason such technique has attracted many theoretical and experimental efforts, thus becoming one of the most prominent quantum technologies of the last decades. The security of the key relies on quantum mechanics and therefore requires the users to be capable of performing quantum operations, such as state preparation or measurements in multiple bases. A natural question is whether and to what extent these requirements can be relaxed and the quantum capabilities of the users reduced. Here we demonstrate a novel quantum key distribution scheme, where users are fully classical. In our protocol, the quantum operations are performed by an untrusted third party acting as a server, which gives the users access to a superimposed single photon, and the key exchange is achieved via interaction-free measurements on the shared state. We also provide a full security proof of the protocol by computing the secret key rate in the realistic scenario of finite-resources, as well as practical experimental conditions of imperfect photon source and detectors. Our approach deepens the understanding of the fundamental principles underlying quantum key distribution and, at the same time, opens up new interesting possibilities for quantum cryptography networksmore » « less
An official website of the United States government
